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I. INTRODUCTION

Fractional calculus is the theory of non-integer derivative and integral. However, the definition of fractional derivative is
not uniqgue. Common definitions include Riemann Liouville (R-L) fractional derivative, Caputo fractional derivative,
Grunwald Letnikov (G-L) fractional derivative and Jumarie’s modification of R-L fractional derivative [1-5]. In the past
decades, fractional calculus has been widely used in continuum mechanics, quantum mechanics, electronic engineering,
fluid science, viscoelasticity, control theory, dynamics, financial economics and other fields [6-17].

In this paper, based on Jumarie type of R-L fractional calculus and a new multiplication of fractional analytic functions, we
use some techniques to find the closed forms of the following two types of fractional integrals:

( OI,‘C") [—% sing(x®)®q Lng, (1 + 2rcos, (x%) + 12) — cos, (x¥)®, arctan, (rsina(x“)®a [1 + rcos, (x%)]®a (_1))11

and

( 01,‘3‘) E c0S, (xM)®, Ln, (1 + 2rcos, (x%) + r?) — sin, (x*)®,, arctan,, (rsina(x“)®a [1 + rcos, (x*)]®a ('1))],
where 0 < a < 1, and r is a real number. In fact, our results are generalizations of ordinary calculus results.

Il. PRELIMINARIES
At first, we introduce the fractional calculus used in this paper and its properties.

Definition 2.1 ([18]): Let 0 < a < 1, and x, be a real number. The Jumarie type of Riemann-Liouville (R-L) a-fractional
derivative is defined by

(o DOf ()] = & [* [T C) )

I'(1-a)dx “Xo (x—t)*

And the Jumarie type of Riemann-Liouville a-fractional integral is defined by

(e f @] = == [ LY g, 2

I'(a) “xo (x—t)1~«
where I'( ) is the gamma function.
Proposition 2.2 ([19]): If a,B,x,, C are real numbers and g = « > 0, then
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(e D)x = x)F] = 1320 (e = %0, ®

and
(x,PE)[C] = 0. 4

Definition 2.3 ([20]): Let x, x0 and a be real numbers for all k, and 0 < a < 1. If the function f,:[a, b] - R can be
expressed as f,(x*) = Yr-o (x — x¢)**, then we say that f,, (x%) is a-fractional analytic at x = x,.

F(ka+1)
Next, we introduce a new multiplication of fractional analytic functions.

Definition 2.4 ([21]): If 0 < @ < 1. Assume that f, (x*) and g, (x%) are two a-fractional power series at x = x,,

fa(x%) = XiZ om( — Xo)"%, (5)
a [ed] b a
Ja(x) = Zk:or(TkH)(x — Xo)"%. (6)
Then
fa(x)®q ga(x®)
© b
= k= 0F(ka+1)( — %) ® Zk:OF(Tk_H)(x — x0)"*
0 1 k a
= Yk=o Tkat1) (Z%:o (m) ak—mbm) (x — xp)"*. (7
Equivalently,
fa(x)®¢q ga(x®)
— ak 1 _ a Bak o bk _
= Zie=o7, (F(a+1) (x = xo) ) Ba Ziczoy (F(a+1)( *o)* )
w 1 k ®ak
= Yk=07; (an:() (m) ak—mbm) (m (x = x0)“ ) : (8)
Definition 2.5 ([22]): Assume that 0 < a < 1, and x is a real number. The a-fractional exponential function is defined by
o Xk 1 1 ®k
Ea(x®) = Yico [(ka+1) Zk:oﬁ(r(an)xa) ' ©)

And the a-fractional cosine and sine function are defined as follows:

@y _ v (CDFxZRE o (—1)k( 1 a)®a2k
cosq(x*) = Y=o Fkar1) . 2k=0"Gp) F(a+1)x , (10)
and
o (@) = g (DS oo (D ( 1 a)®u(2k+1)
sing (%) = Zic= r(@ktDarD) | 2k=0 Grrny \Farn) © : (11)

Theorem 2.6 (fractional Euler’s formula)([23]): If 0 < @ < 1,and i = v—1, then
E,(ix®) = cosa(x®) + ising (x%). (12)

Notation 2.7: If the complex number z = p + iq, where p, q are real numbers. p is the real part of z, and denoted by Re(z);
q is the imaginary part of z, and denoted by Im(z).

I11. MAIN RESULTS
In this section, we use some methods to find the closed forms of two types of fractional integrals. At first, a lemma is needed.
Lemma3.1: If 0 < a <1, and r is a real number, then
Re[(l +rE, (ix“))@a Lna(l +rE, (ix“)) — rEa(ix“)]
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= [1+rcos,(x*)]®, % Lng(1 + 2rcose (x®) +12)
—rsing (x*)®, arctan, (rsina(x“)®a [1+ rcosg (x*)]® (_1)) —1c054,(x%) . (13)
Im[(1 + rE,(ix*))Q®q Lng (1 + 7E, (ix%)) — 7E,(ix%)]
= 15ing, (x*)®, % Lng (1 + 2rcos, (x%) +12)
+[1 + rcos, (x*)]®, arctan, (rsina (XM)®q [1 + Tcos, (x*)]®e (‘1)) — rsing (x%) (14)
Proof Since
(14 7E,(ix9))® 4 Lng (1 + TE,(ix*)) — rE, (ix%)
= (1 +rcos,(x*) + irsina(x“))@)a Lna(l +rcos, (x*) + irsina(x“)) —1cos, (x*) — irsing (x%)
= (1 +71cos,(x%) + irsing (x%))®
E Ln,(1 + 2rcos, (x*) +r?) + i - arctan, (rsina(x“)®a [1+ rcosa(x“)]%(‘l))] —1c0S,(x*) —irsin,(x*) . (15)
Therefore,
Re[(1 + 7B, (ix®))®4 Lng (1 + TE,(ix%)) — rE, (ix®)]
= [1 + rcos,(x*)]®, % Ln,(1 + 2rcos, (x%) +r?)
—rsing (x*)®, arctan, (rsina(x“)®a [1+ rcos, (x%)]®a (‘1)) — 1005, (x%).
And
Im[(1 + 7E,(ix*))®q Lng (1 + TE, (ix*)) — 1E, (ix%)]

1
=1sing (x*)Q®, 2 Ln,(1 + 2rcos, (x%) + r?)

+[1 + rcos, (x%)]®, arctan, (rsina(x“)®a [1 + rcos, (x%)]®a (_1)) — rsing (x%). g.e.d.
Theorem 3.2: If 0 < a < 1, and r is a real number, then
1
(ol%) [—rsina(x“)®a ELna(l + 2rcos, (x%) + 1r?)

—rcos,(x*)®, arctan, (rsina (x9)®, [1 + rcos, (x%)]®a ('1))]
=[1+7rcos,(x*)]®, % Ln,(1 + 2rcos, (x%) + r?)
—rsing (x¥)®, arctan, (rsina (xM)®, [1 + rcos, (x)]®a ('1)) — rcos, (x%). (16)
and
(oI%) [rcosa(x"‘)®a %Lna(l + 2rcos, (x%) + %) — rsin, (x*)®, arctan, (rsina(x“)®a [1+ rcos, (x*)]®« (‘1))]
=715ing (x*)Q®, % Ln, (1 + 2rcos, (x%) +1r?)
+[1 + rcos, (x%)]®, arctan, (rsina(x“)@)a [1+ rcosa(x“)]®“(‘1)> — rsing (x%). (17)
Proof Since

(o) [Lna(1 + TEL(ix))®0q (oD rEe(ix]] = (1 + 7Eq (ix®)®¢ Lng (1 + 1Eq (ix®)) = 7Eq (ix).  (18)
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It follows that

(oI9)[Lne(1 + TE(ix9) @ TiE (ix®)] = (1 4+ 1E4 (ix%))® ¢ Lng (1 + 1E4 (ix®)) — TE, (ix%). 19)

And hence,

1
( I“) [E Lng(1 + 2rcos,(Ax®) + r2) + i - arctan, (TSina(Ax“)®a [1+ Tcosa(Ax“)]@’a (_1))]
0fx
Qq [—Tsing (x*) + ircos, (x)]
= (1 + TEa(ixa))®a Lna(l + rEa(ixa)) _ TEa(ix“). (20)

Therefore,
1
(oI%) [—r sing (x*)®, ELna(l + 2rcos, (x%) + 1r2)
— rcos, (x*)®, arctan, (rsina (xR, [1 + rcos, (x%)]®« (‘1))]
= Re[(1 + 7E,(ix®))®4 Lng (1 + rE,(ix%)) — 1Eq(ix®)]
1
=1+ rcos,(x%)]|®, > Ln,(1 + 2rcos, (x%) + r?)

—rsin,(x*)®, arctan,, (rsina (xM)®, [1 + rcos, (x)]®a (-1)) —1rcos,(x*). (by Lemma 3.1)

And
1
(ol%) [rcosa xMH, ELna (1 + 2rcos, (x®) 4+ 12) — rsin, (x*)®,, arctan,, (rsina(x“)@)a [1 + rcos, (x*)]®a (‘1))]
=Im[(1 + 7E,(ix9)®q Lng (1 + 7E,(ix®)) — TE, (ix%)]
1
=715ing (x*)®, 2 Lng, (1 + 2rcos, (x%) +1?)

+[1 + rcos, (x%)]®, arctan, (rsina(x“)@)a [1+ rcosa(x“)]®“(‘1)) — rsing (x®). (by Lemma 3.1)

g.e.d.
IV. CONCLUSION

In this paper, based on Jumarie’s modified R-L fractional calculus and a new multiplication of fractional analytic functions,
we use some methods to obtain the closed forms of two types of fractional integrals. Moreover, our results are
generalizations of the results in traditional calculus. In the future, we will continue to use our methods to solve the problems
in applied mathematics and fractional differential equations.
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